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Matrices of sizes 1× 1, 2× 2 and 3× 3

Not a definition

Any SQUARE matrix A ∈ Kn
n over a field K is assigned a special scalar

from K. This scalar will be denoted by |A| or det(A) and called the

determinant of A.

Determinants for square matrices of sizes 1× 1, 2× 2 and 3× 3:

|a11| = a11,∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ = a11 · a22 − a12 · a21,∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =
a11 · a22 · a33 + a12 · a23 · a31 + a13 · a21 · a32
−a13a22a31 − a12 · a21 · a33 − a11 · a23 · a32.
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Determinant: Laplace expansion

Let A be an n × n matrix. A matrix Aij is obtained from A by
deleting the i-th row and j-th column.

Laplace expansion

Let j be any number between 1 and n. Then:

det(A) =
n∑

i=1

(−1)i+jaij · det(Aij).

The above formula is called the Laplace along the j-th column.
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Laplace expansion

In particular, if j = 1 then

det(A) =
n∑

i=1

(−1)i+1ai1 · det(Ai1).
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Laplace expansion

Let’s calculate the determinant of the following matrix by
expanding it along the first column:∣∣∣∣∣∣

1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣ = 1 · det(A11)− 4 · det(A21) + 7 · det(A31) =

1 ·
∣∣∣∣ 5 6

8 9

∣∣∣∣− 4 ·
∣∣∣∣ 2 3

8 9

∣∣∣∣+ 7 ·
∣∣∣∣ 2 3

5 6

∣∣∣∣ = 0
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Properties of determinants

Let A be a square matrix of size n × n.

Fact

1 det(A) = det(AT ),

2 det(A) = 0 if A has a zero row (column) or two identical rows (columns),

3 det(A) = 0 if and only if r(A) < n,

4 det(A) = − det(B) if B is obtained from A by single row switching
(Ri ↔ Rj),

5 det(A) = det(B) if B is obtained from A by single row addition
(Ri + k · Rj → Ri ),

6 det(A) = k · det(B) if B is obtained from A by the row scaling kRi → Ri .

The three latter properties are also true for elementary column operations.
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Properties of determinants

∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣ R2−4·R1=

∣∣∣∣∣∣
1 2 3
0 −3 −6
7 8 9

∣∣∣∣∣∣ R3−7·R1=

∣∣∣∣∣∣
1 2 3
0 −3 −6
0 −6 −12

∣∣∣∣∣∣ =

2 ·

∣∣∣∣∣∣
1 2 3
0 −3 −6
0 −3 −6

∣∣∣∣∣∣ = 2 · 0 = 0.
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Properties of determinants

Fact

det(In×n) =

∣∣∣∣∣∣∣∣
1 0 . . . 0
0 1 . . . 0

. . . . . .
0 0 . . . 1

∣∣∣∣∣∣∣∣ = 1.

Fact

Let A and B be square matrices of size n × n.

det(A · B) = det(A) · det(B).
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Determinants and systems of linear equation

Theorem

If AX = B is a system of n linear equations with n unknowns then
AX = B has a unique solution iff

det(A) 6= 0.
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Solving SoLEs using determinants

Cramer’s rule

Consider a system AX = B of linear equations with n equations and n
unknowns. In other words, with A a square matrix of size n × n. Let A|i
denote a matrix obtained from A by replacing its i-th column with the
column B. If det(A) 6= 0 then

x1 =
det(A|1)

det(A)
,

x2 =
det(A|2)

det(A)
,

. . .

xn =
det(A|n)

det(A)
.
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Solving SoLEs using determinants: example

Consider the system

x + y = 1,

x + 2y = 0.

Here, we have

A =

(
1 1
1 2

)
, det(A) = 1.

Moreover,

A|1 =

(
1 1
0 2

)
, det(A|1) = 2,

A|2 =

(
1 1
1 0

)
, det(A|2) = −1.

Hence, x = 2 and y = −1.
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Matrix inversion

Definition

Let A a square matrix of size n × n. A matrix B of the same size
as A is called inverse of A if

A · B = In×n,

B · A = In×n.

If B is an inverse of A then it is unique.

The inverse of A is denoted by A−1.
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Example

Let

A =

(
1 0
0 2

)
It is easy to check that the following matrix in the inverse of A:

A−1 =

(
1 0
0 1

2

)

Warning

NOT all matrices are invertible.
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When is a matrix invertible?

Theorem

A square matrix A is invertible if and only if det(A) 6= 0. If A is
invertible then

det(A−1) =
1

det(A)
.

Proof (of the 2nd statement): Recall that det(I ) = 1 and
det(A · B) = det(A) · det(B). If A is invertible then A · A−1 = I .
Hence,

1 = det(I ) = det(A · A−1) = det(A) · det(A−1).
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How to invert a matrix?
Fact

Let A be a square invertible matrix. Consider the n × 2n matrix

C = (A|In×n).

Row reduce the matrix C to the following form

(In×n|B).

Such a reduction is possible if and only if A is invertible. Then B

obtained above is the inverse of A.

(
1 0 1 0
2 2 0 1

)
→

(
1 0 1 0
0 2 −2 1

)
→

(
1 0 1 0
0 1 −1 1

2

)
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Inversion using determinants

Let A be an invertible square matrix.

Fact

A−1 =
1

|A|
·


(−1)1+1|A11|, (−1)1+2|A12|, . . . (−1)1+n|A1n|
(−1)2+1|A21|, (−1)2+2|A22|, . . . (−1)2+n|A2,n|

. . . . . . . . . . . .
(−1)n+1|An,1|, (−1)n+2|An,2|, . . . (−1)n+n|An,n|


T

where Ak,m denotes a matrix obtained from A by deleting k-th row
and m-th column.
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Inversion using determinants

(
1 0
2 2

)−1
=

1

2

(
|(2)| −1 · |(2)|
−1 · |(0)| |(1)|

)T

=
1

2

(
2 0
−2 1

)
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Inverting 2× 2 matrices

Let

A =

(
a b
c d

)
Assume that det(A) = ad − bc 6= 0. Then

A−1 =
1

ad − bc
·
(

d −b
−c a

)
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